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J .  Phys. A: Math. Gen. 15 (1982) 1519-1536. Printed in Great Britain 

Isolated systems and integer-spin radiation fields 

Malcolm Ludvigsent 
Department of Mathematics, University of York, Heslington, York YO1 SDD, UK 

Received 5 June 1981 

Abstract. A certain class of integer-spin, massless fields, which appears to be sufficiently 
broad to include the radiation fields generated by all well behaved flat-space isolated 
systems, is considered. These fields satisfy an asymptotic flatness condition which is weaker 
than the usual peeling condition. Expressions which have the form of an integral over 
null infinity are obtained for their total momentum and angular momentum, and are 
shown to be compatible with a well defined symplectic product. 

1. Introduction 

In two-component spinor notation, a free spin-s massless field may be represented 
by a completely symmetric spinor with 2s indices which satisfies the field 
equations Vi ,4A. . .Z  = 0 everywhere, where VAA' denotes the spinor covariant derivative 
(Penrose 1968). For example, when s = 1,  AB represents a free Maxwell field with 
field strength Fab = E A ' B ' ~ A B  + E,&A,B*; when s = 2, ~ A B C D  represents a free linearised 
Weyl field with field strength 

Cobcd = EA'B'EC'D'4ABCD + E A B E C d A ' B ' C ' D ' .  

Of particular importance in certain physical applications, such as scattering, are 
those free integer-spin, massless fields which may be used to describe outgoing 
radiation fields produced by well behaved isolated systems. By such a system we have 
in mind an isolated collection of mutually interacting, spatially bounded sources, with 
no incoming radiation, which exhibits typical scattering behaviour. Such fields should 
obviously carry finite momentum and angular momentum, and satisfy some asymptotic 
flatness (AF) condition. It is, however, important to choose this AF condition to be 
of the correct strength. If it is too strong, the resulting class of fields may be too 
restricted to describe a general outgoing radiation field; if it is too weak, the resulting 
fields may carry infinite momentum and angular momentum, and thus would not be 
suitable for describing the outgoing radiation field generated by a well behaved isolated 
system. In this paper we shall first define a set of AF conditions which appear to be 
of the appropriate strength for radiation fields, and then consider properties of the 
resulting class of fields. Apart from 0 5 ,  we shall deal exclusively with flat-space 
systems. 

According to Penrose's conformal criterion, a field 4 is said to be AF at future 
null infinity 9+ if its conformally related field C$ = O-'#J is well defined and smooth 
on 9+ (Penrose 1968). Here O is the conformal factor which satisfies R=O and 
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1520 M Ludvigsen 

V,R f 0 on 9'. This implies that the field satisfies the so-called peeling conditions 

) ( E  > O )  (1.1) 0 - 2 r - l + i  + o ( r - 2 s - l - c + ;  4; = 4 i r  
where ( U ,  r, 6, f )  is any retarded, radially null coordinate system (flat-space Bondi 
system) with r - Q-'. In accordance with the standard spin coefficient notation, 4; 
are defined bv 

where oAoA' = VAA'U and O A L ~  = 1. 
Even though conditions (1.1) are satisfied by the retarded field produced by a well 

behaved isolated system, they can be violated by the corresponding advanced and 
radiation fields. To see how this can come about, consider an isolated Maxwell system 
consisting of two charged particles which interact via their retarded fields, and which 
have well defined asymptotic velocities in the sense that U" = uo" +O*(T-'). Due to 
the long-range effects of the Coulomb part of the interaction, which is dominant at 
asymptotic times, the velocity of either particle can be shown to have the asymptotic 
form 

= t ) g a + A " ~ - ~ + 0 * ( 7 - ( ' ~ ~ ' )  ( E  > O )  (1.3) 
where T is proper time (Ludvigsen 1981a). From this behaviour it can be deduced, 
using the LW potentials, that the advanced field (bad", and hence the radiation field 

- (bad", satisfy 

Conditions (1.1) are therefore violated. (The asymptotic order symbol O* used in 
(1.3) and (1.4) is defined as follows: f ( r ,  y")  = O * ( r - ' )  means f ( r ,  y " )  = O(r- ' )  and 
A D " f ( r y " )  = O ( r - " + " ) ) ,  where D = a/ar,  and A represents any combination of y a  
derivatives. This order symbol was first used in connection with AF fields by Penrose 
(1965).) 

Using (1.3), one can further show that the asymptotic component 4: of the radiation 
field satisfies 

for large positive U 
and 

47 .= O*(u-€) 

4: =el ( i . :  - V:)+e2( i / :  - V:)+o*(u-') for large negative U, 
+(-) 

where e, is the charge of the ith particle and V, are real, non-zero weighting factors 
depending on the particle's velocity in the asymptotic future (past). Thus, for non- 
trivial scattering with real charges, limu+-m 4: is real and non-zero. 

A similar argument also holds for gravitating systems. Consider an isolated 
scattering event consisting of two massive particles. If we assume that at asymptotic 
times, when they are far apart, the particles interact via their linearised retarded 
gravitational fields, it is again possible to show that (1.3) holds. This can then be used 
to show that the resulting linearised radiation Weyl field satisfies 

0 - 3 +  0 * ( ~ - ( 3 + f ) ) ,  
= 0 * ( ~ - ( 3 + 4 ) ,  41 = 0 * ( ~ - ( 3 + 4 ) ,  42 = 4 2 r  

44 = 4:r- l  + O * ( P + * ) ,  
(1.5) d3 = &-2 + o * ( r - ( 2 + c ) )  

where limu+-m 4: is real. Thus conditions (1.1) are again violated. 



Isolated systems and integer-spin radiation fields 1521 

From these two examples it is clear that the Penrose AF condition is too strong 
for our purposes: we cannot demand that the conformally rescaled field be well defined 
on 9+. We can, however, weaken this condition in a natural way by demanding, 
instead, that the 'projections' of the field on 9' be well defined. By this we mean 
that if 2: ( x )  ( p  = 0, 1,2)  is a smooth triad field on the conformally rescaled space 
which lies entirely in the tangent space of 9' when x E 9+, then the projections 

f ia . . .a  = @ab ... z 2: 
are well defined on 9'. Here 
associated with 4. In particular, if we choose Xi such that 

= dA...z E I A ~ B , .  . . is the self-dual tensor field 

R a  - * A A A ' =  Ra - AA AA'  = i a ,  R" o - ~  - L - n ,  - * a  1 - 0  L rit", 2 - L  0 

where (6~, tA) is the conformally rescaled spinor dyad field associated with the rescaled 
coordinate system (U, n, 5, f )  (a = - l / r ) ,  we see that the limits 

(1.6) 

exist for 2s b i 
general not exist since they involve the vector 
G a ,  does not lie in the tangent space of 9+. 

functions on 4' and that di be 'smoothly' attached to 9+ in the sense that 

s. The corresponding limits for the remaining components will in 
= dAdA', which, unlike S a ,  ha and 

Condition (1.6) can be strengthened by demanding that ~ Y ( u ,  5, f )  be smooth 

where A is any combination of U, 5 and 5 derivatives. Assuming that (1.6) and (1.7) 
hold in any conformal frame, one can deduce that 

a" A 

lim C!"-,4,=0 (1.8) 
n+u an 

for for n 5 1 and 2s 5 i 3 s .  

(1.8) can be shown to be equivalent to 
In terms of the physical field components, our new AF conditions (1.6), (1.7) and 

1 for 0 s i < s, 4i = o * ( r - ( $ + l + e )  

(1.9) 
1 for s si s 2s. &i = &ir-*s-l+i + ~ * ( ~ - Z s - l - r + i  

In fact, by using the field equations, one can show that (1.9) are equivalent to the 
single condition 

1. (1.10) 

On comparing (1.9) with (1.5) and (1.41, we see that our new AF condition is sufficiently 
weak to include radiation fields of the type considered above. From now on, a field 
will be said to be AF if it satisfies condition (1.10). 

As we shall see in § 3, a field which is AF at 9+ need not be AF at 4-, nor well 
behaved at space-like infinity. In order to avoid such fields, we need an extra AF 

condition which should, of course, be sufficiently weak to include the above examples 
of radiation fields. Such a condition is given by 

(1.11) 

4s = 4sr 0 - ( s + l )  +o*(r-'s+l+') 

4%, 5,5) = d(59 f ) + O * ( u - ' )  
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for large negative U. In the following sections we shall show that fields which satisfy 
both (1.10) and (1.11) are AF at both 9' and 9-, well behaved at space-like infinity, 
and carry finite momentum and angular momentum. 

Even with this extra condition our field is not necessarily as well behaved as we 
might wish. For example, given a Maxwell field which satisfies (1.11) and (l.lO), it 
is comparatively simple, using the energy-momentum tensor Tab = 4*AAeB,, to calcu- 
late the total flux of momentum P:(-) and angular momentum M:L-) radiated through 

. These quantities are finite and, as one might expect, 9+(-) 

P;: = P,. 

However, if 4 given by (1.11) has an imaginary component then 

# Mil,. 

The third AF condition, 4 = real, therefore appears to be necessary. This is satisfied 
by our examples of radiation fields and, as we shall see in the following sections, it 
guarantees that h f : b  = M o b  for fields of arbitrary (integer) spin. 

Thus, in order to obtain a class of fields which is sufficiently general to include 
radiation fields of the type considered and yet, at the same time, sufficiently restricted 
for quantities such as total momentum and angular momentum to be finite and uniquely 
defined, the following AF conditions are needed: 

(1.12) 

where d(5, l) is real. We shall refer to fields which satisfy (1.12) as radiation fields, 
and in the remainder of this paper we shall consider their properties. 

After developing a certain amount of mathematical machinery in 0 2 we shall, in 
0 3, show that radiation fields are AF at 9- as well as at §+, and that they can be put 
into one-to-one correspondence with a certain class of weighted functions defined on 
either 9' or 9-. In 0 4 we show that there exists a natural symplectic product between 
any two spin-s radiation fields which may be written as an integral involving these 
weighted functions over §+ or 9-. We then use this symplectic product to define the 
total momentum and angular momentum carried by a radiation field. Finally, in 0 5 ,  
we discuss the relevance of these fields to certain curved space and nonlinear systems. 

2. Radially null coordinate systems 

In this section, which is included mainly for the sake of completeness and to fix a 
consistent notation, we shall review some standard work on radially null coordinate 
systems, spin and conformally weighted functions and the differential operators B 
and 8. 

We begin by introducing a standard prescription by means of which a unique, 
retarded (or advanced), radially null coordinate system (U, r, 5, s', can be constructed 
from a given reference frame consisting of a constant spinor dyad field {aA,@A}  

(aAPA = 1) together with an origin point 0. This prescription is useful because it 
provides us with an isomorphism between the PoincarB transformations connecting 
such frames and the corresponding coordinate transformations connecting the associ- 
ated coordinate systems. 
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We first define a family of spinors according to 

oA(li l )  = (2p)-'/2(ffA + !?PA) 

where 
P = i ( l +  /y) (2.2) 

and 5 is a complex number which we interpret as a stereographic coordinate labelling 
points on a sphere. This family of spinors defines a family of null vectors La(& f )  = 
O A o A ,  which sweep out all null directions as l varies over the sphere, and which 
automatically satisfy 

Lava = 1 ,  (2.3) 

Since aApA = I ,  v a  satisfies 

v a v a  = 2. (2.5) 

For future reference we also define a related family of spinors by 

(2.6) A' - 
I A  = -U A OA,. 

From (2.3) it follows immediately that 

oAIA = 1 .  (2.7) 
Given any other dyad {a:, p:}, related to { a A ,  PA} by an SL(2, C )  transformation 

(2.8) 

we can construct the associated quantities 

02; = (2P*)-'/*(a2; +pp2;) (2.9) 
and 

V:A' (Y:a;' +pzp:'. 
From these relations we see that, when OA and 0 2  are parallel, 5 and l* are related 
by the bilinear transformation 

p = ( b + d f ) / ( a + c f )  (2.10) 

02; = K1/2 eiW2 O A ,  (2.11) 

K = v:La (2.12) 

and that 

where K and A are given by 

and 
a l / a l *  = ei* K-'P/P*. 

In particular, under a U(2) rotation we have 

(2.13) 

K = l ,  (2.14) a*  a 
U = v ,  
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and 

a i / a g *  = eiA PIP*.  (2.15) 

These relations will prove useful when we come to consider spin and conformally 
weighted functions. 

Since L a  sweeps out all null directions, the position vector X "  of some point P 
relative to an origin point 0 can be written as 

x a = r L a ( 5 , f ) + u u a  ( r  3 0) (2.16) 

for some unique values of U, r and l. Thus (U, r, 5, f )  serves as a (retarded) radially 
null coordinate system and is uniquely determined by the frame {aA, PA, 0). 
The U =constant surfaces are future null cones emanating from the line x" = UU", 
labels the generators of these cones, and r is an affine parameter along the generators. 
(In a similar way we can define an advanced system (U', r' ,  L', 5 ' )  according to 

(2.17) x a  = rILa'(Sr, F) + U I U " '  

where L a ' =  -La and U"'= U".) 
The spinor dyad field associated with such a coordinate system is given by 

oA(u,  r, 5 , f )  = OA(5, f ) ,  LA(U,  r, 5, f )  = IA(& f ) ,  (2.18) 

and, in accordance with the standard spin coefficient notation, the independent 
components of the field ($A ...z are defined by 

(2.19) 

Given any other reference frame {a:, p:, 0*} we can, by the same prescription, 
construct a new coordinate system (U*, r*, 5* ,  p) together with its associated spinor 
dyad field {o:, L : } ,  and find the corresponding components 4: of the field. If our 
two frames are related by a U(2) rotation we have 

(2.20) 

where A is determined by equation (2.13). In general, a quantity q which transforms 
according to Q* = eIsAq under a U(2) rotation is said to have spin weight (sw) s. Thus 
4I has sw (s - i ) .  Two differential operators associated with spin weighted functions 
are given by 

($:(U*, <*, f * )  =e1(s-k)A4k(u, 5, f )  

a7 = 2 ~ ' - '  a(p*V)/ay, Zq = 2 ~ ' + ~  a(p-'q)/aE (2.21) 

where q has sw s (Newman and Penrose 1966). Using (2.15) one can show that 87  has 
sw s + 1 and 

In terms of the above notation, the field equations can be shown to be equivalent 
has sw s - 1 .  

to 
1 

($1 =--a ($. 1+1, 
r 

a($,+' 2 s - i  1 -  -+- ($i+1= -- 3 chi, ar r r 

where + = a / a u  (Couch and Newman 1972). Using the radial 
together with the AF condition ( 1 .  lo), the asymptotic fall-off 

(2.22) 

(2.23) 

field equations (2.23), 
behaviour of the field 
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components 4i can be determined and is given by 

(2.25) 

The remaining set of field equations (2.22) can now be used to show that the asymptotic 
field components 4: satisfy 

fj: = -&$;+I. (2.26) 

Equations (2.26) are sometimes referred to as the asymptotic field equations on 9'. 
(The corresponding equations on F, which can be obtained by using an advanced 
coordinate system, take the same form.) 

If the coordinate systems (U, r, 5, f )  and (U*, r*, 5*,  p) are related by a pure 
translation of origin point given by y", then the asymptotic field component 4:s 
transforms according to 

4;: (U*, 5* ,  = 4:s(u, 5, f )  (2.27) 

where 
U* = U + Lay" and l* = 5. (2.28) 

Similarly, under a pure SL(2, C ) transformation, we have 
40*( 2 s  U * 9 l * , f * ) = K - ( S + l )  e+* 5, f )  

where 

U* = Ku 

(2.29) 

(2.30) 

and 5* and 5 are related by equation (2.10). 

more complicated form and will not be considered here. 

spin weight. In general we say that a function T which transforms according to 

The transformation laws for the remaining asymptotic field components assume a 

The function q5:s is an example of a quantity with conformal weight as well as 

,,* = K w  (2.31) 

under an SL(2, C) transformation has sw s and conformal weight (cw) w, or weight 
(s, w), for short. From (2.11) we see that OA has weight (5;) and, on using (2.13), 
that the spherical surface element 

d o  = d ~ A d f j 8 1 r i P ~  (2.32) 

has weight (0,2). From (2.30) we also see that a U derivative decreases conformal 
weight by unity: if 7 has weight (s, w )  then 4 has weight (s, w - 1). 

Finally, to conclude this section, we consider the transformation properties of 
weighted functions under infinitesimal PoincarC transformations. Under an 
infinitesimal translation, e", we have 

(2.33) 

where LE'= is the translation Lie derivative. Similarly, under an infinitesimal Lorentz 
transformation determined by era'] we can define the 'Lorentz' Lie derivative LE'"* by 

ZT = W a e " ) T  = T* (u ,  L , ~ ) - T ( u ,  5, f )  = + L e a  

( 3 a b e a b t 7 ) = ~ * ( ~ ,  5, ~ ) - T ( u L ~ ) .  
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However, for our purpose, it is more convenient to use complex self-dual Lorentz 
transformations of the form SL(2, C) 0 1, rather than real transformations which have 
the form SL(2, C) 0 SL(2, C). These complex transformations do not affect dashed 
spinors and, in infinitesimal form, are determined by a symmetric spinor eAB. The 
corresponding real transformation is determined by eab = E e + Using 
(2.30) and (2.31), one can show that the Lie derivative associated with these transfor- 
mations is given by 

Z A B V  =8qoAoB - [ U f i  - ( w + s ) q l o ( A I B ) .  (2.34) 

It is easily checked that &'AB preserves spin and conformal weight. Relations (2.33) 
and (2.34) will be used in § 4 to define the total momentum and angular momentum 
carried by a spin-s radiation field. 

A'B' AB 

3. The asymptotic field components 

A characteristic property of free, AF, massless fields, which we shall prove in the 
Appendix, is that they satisfy the following form of the Kirchhoff-Penrose integral 
theorem: 

(3.1) 

where 4is is the asymptotic r-' component of the field, and dR  is the spherical surface 
element (2.32). Note that (3.1) is form invariant because the sum of the weights of 
all its components is zero. According to (3,1), an AF, spin-s field is completely 
determined by a function, namely dZs, of weight ( -  s, - (s + 2)). Conversely, according 
to the results of the previous section, a free AF, spin-s field determines a function of 
weight ( - s, - (s + 2)), namely its asymptotic component 44,. We therefore see that 
a two-way correspondence exists between AF, spin-s fields and functions of weight 
( - s, - (s + 2)). Such a function cannot, however, be specified arbitrarily; the require- 
ment that the field be AF imposes a restriction on its asymptotic behaviour for large 
U. In this section we shall determine this asymptotic behaviour and the corresponding 
behaviour of the asymptotic components 4: of the field on both 9' and 9-. 

We begin by proving the following theorem which gives a sufficient condition for 
the field associated with a function of weight ( -  s, - (s + 2)) to be AF in the sense of 

4a ... z(xa) = -f d:s(XaLa, 5, ~ ) O A .  . Oz d o  

(1  * 10). 

Theorem 1. If x ( u ,  5, f )  has weight (-s, -(s+2)) and satisfies x =O*(U-(~+'+' )  ) for 
large positive U, then the field 1 , 4 ~ . . . ~ ( x ~ ) ,  defined by 

I ,~A. . .z  = -f X ( X ~ L ~ ,  5, ~ ) O A .  . . Oz dR, (3.2) 

is AF at $+ and its asymptotic components $:(U, [, f )  on $+ are given by 

= ( -  l ) ' ( a ' - s / a u ' - s )  $'-is ( 2 s a i ~ s )  (3.3) 

as+ls/aUs+l = (3.4) 

where S(u ,  5, f )  is the unique function of weight ( -  s, - 1) which satisfies 

and 
lim S = 0. 
U--  

(3.5) 
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Similarly, if ,y = O*(U- (~+~+ ' )  ) for large negatioe U ,  then the field given by (3.2) is AF 
at 9- and its asymptotic components $?(U, 5, f )  on 9- are given by 

*p' = ( -  l)'(a'-s/aU'-s)B2s-'s' (3.6) 
where 

and 

lim S'=O.  
"-+--a3 

(3.8) 

Proof. First of all, it is clear that $ is automatically a solution of the field equations, 
for 

V t , $ A , , , z  =-fXOAOA*OA.. . Oz d n = O .  

In order to prove asymptotic flatness at 9' it is sufficient to show that 

rs+l$s  = $: +O*(r-') (3.9) 
for any given outgoing null geodesic. Moreover, since (3.2) is form invariant, we may, 
without loss of generality, choose our coordinate system such that this given geodesic 
is specified by 5 = U = 0. In this case (3.2) gives 

where we have used equations (2.1), (2.6) and (2.16). We require to show that rs+l$s, 
given by (3.10), satisfies (3.9). 

Consider the regular sw - s  function X defined by 

By making a Taylor series expansion about l=  f =  0, it can be seen that X has the form 

x = (lS+lf/jPS+l)Y(U, 5, f ) ,  
where Y is a regular (sw 0) function. We can therefore write ,y in the form 

(3.11) 

Since x = o * ( ~ - ( * + ~ + ~ )  ), it is clear that 

B ' X ( U ,  0 0) = O*(U-(S+l+r) ) and Y(U, f ;  [)= O*(U-(S+l+r) ). (3.12) 

By substituting (3.11) into (3.10) and making a change of variables from [and to 
U and 4, where 

U = r l f / / c l+  ~ f )  and eZi* = { / E  
we obtain 

(3.13) 
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where 

Yo(u)= J Y d4.  
0 

Equation (3.13) together with the asymptotic conditions (3.10) imply that 

rS+'ILs = S: +O*(r-'), 

where $: is finite and given by 

du. 
S! 

(3.14) 

The field is thus AF at 9'. 
Using equation (3.14) together with the asymptotic field equations (2.27), it is now 

an easy matter to deduce that the asymptotic components, t,!~: for 2s a i as, of the 
field are given by 

= ( -  l ) i (a i - s /au ' - s )B2 ' - iS  

where S is determined by 

lim S = 0. 
U-.- 

as+iS/aUs+l and 

The proof of the remaining part of the theorem relating to 4- is the same as that 
given above except that an advanced coordinate system is used in place of a retarded 
one. 

According to this theorem, asymptotic flatness at 9' depends only on the behaviour 
of x for large positive U ;  the behaviour of x for large negative U does not affect 
asymptotic flatness at $+. 

We have shown that the asymptotic components of a field generated by a function 
x which satisfies ,y = O * ( U - ( ~ + ~ + ' )  ) are given by (3.3) where S satisfies S = O*(u-') .  
Our next theorem shows that this is true for all AF fields. 

Theorem 2. If a spin-s field is AF at .%+, then its asymptotic components 4: on $+ 

have the form 
4: = ( -  l ) ' (a i -s /au ' -s)  ~ 2 s - i ~  

where S is a function of weight ( -  s, - 1) which satisfies S = O*(u- ' )  for large positive 
U. Similarly, if the field is AF at 9-, then is asymptotic components 47 on 9- have 
the form 

where S' satisfies S' = O*(u-')  for large negative U. 

4:' = ( -  l ) i (a i -s /au ' -s)  8 2 s - i ~ '  

Proof. Let @(U) be a smooth function with the property that @(U) = 1 for U 4 R, 
and @(U) = 0 for U > R + 1, and let x = @&. x obviously satisfies the requirements of 
theorem 1, and from the KP integral theorem it is clear that 

*s = 9 s  (3.15) 

on the origin cone, provided that r 4 R. Since 4 and 4 are both AF we have, on the 
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origin cone, 

Rs+"+s(R) = +: +o*(R-'), 
and hence 

Rs+"(6,(R) = R"'+,(R) = (6: +O*(R-'), 

4: = *: +o*(R-'). 

Thus, on using (3.14), we have 

and hence 
-j; Bsfj;sus 

du = du. 0 eas& 
(6, =-l im 

R-m S !  S !  
(3.16) 

Since 4: is finite and (6;, is a smooth function of sw-s  it can be seen that equation 
(3.16) implies that f j : s  and all its B derivatives must fall like O ( U - ( ~ + ~ + ' )  ) for large 
positive U. Furthermore, by making use of the fact that this applies for all coordinate 
frames, one can show that the B derivatives of f j ; s  transform correctly if and only if 
f j tS = o*(u-(s+l+') ). The remainder of the proof now follows directly the KP integral 
theorem and theorem 1. 

Let us now apply our theorems to a spin-s radiation field which, by definition, 
satisfies 

(6s = ( 6 ~ r - ( s + 1 ) + o * ( r - ( s + l + f ) )  and (6: =(6(l,f)+o*(u-') (3.17) 

for large negative U, where (6 is real. These conditions together with our theorems 
can be seen to imply: 

(1)  The field is AF at both 9+ and 9-. 
(2) From the point of view of 9', the field is uniquely associated with a function 

(a) S = O*(u- ' )  for large positive U ; (3.18) 

(b) S = 7r(& f )+O*(u- ' ) ,  for large negative U, (3.19) 

S of weight (-s, - 1)  which satisfies: 

where 7r is given by 

( - 1)sBB'7r = f$ ; 

(c) (6: = ( -  l)'(ag-s/au'-s) B*"-'S. 

(3.20) 

(3.21) 

(3) From the point of view of 9-, the field is uniquely associated with a function 

(a) S'= O*(u- ' )  for large negative U ; (3.22) 

(b) S ' = - T ( ~ ' ,  ~ ) + O * ( U - ' )  for large positive U ; (3.23) 

( c )  = (-  l)'(a'-"/au'-S)8*S-'S'. (3.24) 

(3.25) 

Furthermore, by means of the KP integral theorem one can show that the field is AF 
and purely electric at space-like infinity in the sense specified by Ashtekar and Hansen 
(1978). 

S' of weight ( -  s, - 1) which satisfies: 

(4) S ' ( U ,  6, a = S ( U ,  l, a - T. 
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Finally, we remark that since T is a regular sw - s function for which as* is real 
(cf equation (3.20)), the theory of spin weighted functions (Newman and Penrose 1966) 
can be used to show that 

* = iSX (3.26) 

for some real sw 0 function X. Furthermore, X may be chosen such that it consists 
only of spherical harmonic functions Yt,,, for which 1 2  s, or, equivalently, that PsX is 
a regular function where P is given by equation (2.2). Equations (3.19) and (3.25) 
thus become 

s =isx+0*(u-') (for negative U )  

(3.27) 

where P'X is regular. 
Equations (3.27) will prove useful when we come to consider angular momentum. 

4. Momentum and angular momentum 

In this section we shall first determine expressions for the momentum I','(-) and 
angular momentum M:i-) radiated through $+(-) by a spin-s radiation field, and then 
show that they satisfy 

P,' = P, =Pa = tn(s, pas) 
and 

M,'b = = Mab = tn(s, p&s) 
where R(S1, S2) is a well defined symplectic product between spin-s radiation fields. 

We start with spin-1 (Maxwell) radiation fields which, unlike fields of higher spin, 
possess a well defined energy-momentum tensor given by 

Tab = 6 A B 6 A ' B ' .  (4.1) 

In terms of this tensor, the momentum and angular momentum radiated through 9' 
is given by 

P,' = lim T,, d V' (4.2) 
R-m 

where V is the hypersurface r = R. In terms of our notation it is, however, more 
convenient to use the symmetric spinor component ~2~ of M:b, where 

(4.3) 
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By means of equations (4.1). (4.2), (4.3), (2.16) and (2.24) one can easily show that 

and 

(4.5) 
J 

For spin-1 fields we have 4; = S and 4: = -8s where S has weight ( -  1,  - 1) .  
Thus, when expressed in terms of S, equations (4.4) and (4.5) give 

P: = .%La dR du = (5?as)S dfl  du (4.6) J J 
and 

W ~ B  = I {ASOAOB - u S O , A I B ) } S  dR du = I ( 3 A B S ) S  dR du, (4.7) 

where we have used the Lie derivatives defined by equations (2.33) and (2.34). 
Similarly for 9-, we have 

Pi = (YaP)S‘ dR du, (4.8) 

(4.9) 

I 
W A B  = I (5?J)S’ dR du. 

In order to show that 

(4.10) 

(4.11) 

we use the fact that 

s l = s - a x ,  (4.12) 

where X is real (cf equation (3.27)). Since S = S ’ ,  the proof of (4.10) is obvious. The 
proof of (4.1 1) is more involved and relies on the reality of X .  From equations (4.7), 
(4.9) and (4.12), we have 

f w : B - w A B  = ZXABXOAOB dR 

where we have integrated by parts and used the fact that 8 0 A  = 0. 
Since fields of higher spin do not possess a well defined energy-momentum tensor, 

the above procedure cannot be used to determine expressions for their momentum 
and angular momentum. Nevertheless, by analogy with the spin-1 case, we can simply 
define the w i g ’  and P:‘-) of a spin-s field by 

P,  = (YaP)S’ dR du, (4.13) I 
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where S is now the associated function of weight (-s, - 1). These expressions are 
invariant under Lorentz transformations and transform according to 

(4.15) 

(4.16) 

under a pure translation of origin point, 00* = x a .  
In terms of vector notation, equation (4.16) gives 

M% = Mab + 2 4 ,  x b ]  

which is, of course, the 'correct' transformation law for angular momentum. 

(4.10) and (4.11). We use equation (3.27), namely 
We shall now show that the expressions (4.13) and (4.14) automatically satisfy 

S' = s -$x, (4.17) 

where X is real and P'X is regular. Since S I  = S, the proof of (4.10) is again obvious. 
The proof of (4.11) is very much more involved and again relies on the reality of X .  
After integrating by parts and using equation (4.17), equations (4.14) give 

where 

After some algebraic manipulation, one can show that A can be written in the form 

(4.20) A = a3g/alJ + ac/ag 
where B and C consist of linear combinations of terms like 

ai+jxi ak+lxr m' a f i a l k '  

Therefore, on substituting (4.20) into (4.19), integrating by parts and using the fact 
that P'X is regular, we obtain the required result, namely 

w ; B - w ~ B  = O .  (4.21) 

From the point of view of Hamiltonian theory, a desirable property of Pa and wAB 

Pa = &s, 9s) (4.22) 

is that they can be written in the form 

and 

oAB = $WS, ~ A B s ) ,  (4.23) 
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where fl(Sl, S2)  is the invariant, non-degenerate symplectic product defined by 

fl(SI, S 2 ) = i j  ( S , S , - S , ~ , + ~ , S , - S , S , ) d f l d u .  

The proof of (4.22) is obvious; the proof of (4.23) goes as follows. By using equation 
(3.27) and integrating by parts, we have 

fn(s, ZA&) = a [ ( Z A B ~ ) ~  - SZABS -+ (ZABS)S - &?ABS] dfl du I 
= i [ ( Z A B ~ ) ~  +(ZABS)S] dfl  du 

(4.24) 
The first term on the right-hand side of (4.24) is @AB, and the second term vanishes 
by equations (4.21) and (4.18). Thus 

W A B  = $o(s, zABs). 

5. Discussion 

Even though this paper is firmly based in flat space-time and deals only with linear 
systems, many of the results obtained are relevant to certain curved space and nonlinear 
systems, particularly H-spaces and self-dual gauge fields. The reason for this is 
essentially twofold. 

( 1 )  When considered as an abstract metric space, the 9' of flat space-time is 
identical to that of any asymptotically flat space-time-all 9' are created equal. 

(2) In the asymptotic region close to 9+, the fields are small and thus, to some 
extent, a linear approximation becomes valid-at least for certain 'radiation' com- 
ponents. 

Let us consider how this applies to H-spaces. 
An H-space is a self-dual solution of the complexified, empty (source-free) Einstein 

equations which can be constructed from a function 6 ( ) ( u ,  [, f )  of weight ( -  2, - 1). 
This function is usually interpreted as the asymptotic shear of some real solution. 
Since it is self-dual, the curvature of an H-space is completely described by a single 
Weyl spinor I,bABCD which satisfies the Bianchi identities 

v2'1,bABcD = 0,  

where V 2 ,  is now the 'curved' H-space spinor covariant derivative. We obviously 
cannot go into the details of the H-space construction here but, suffice it to say, any 
suitably well behaved function 5'' of weight ( -2 ,  - 1) can be used to generate an 
H-space which reduces to flat space-time when 5" vanishes, or can be made to vanish 
by means of a supertranslation. In a sense, 6' is a measure of the curvature of its 
associated H-space. For details of the H-space construction we refer the reader to 
KO et a1 (1981). 

If 6" is small, one can form a perturbation expansion for an H-space by writing 
e"= 7s and expanding in powers of T. The first-order (linear) approximation can be 
shown to be a flat-space, spin-2 field which is identical to that generated by S by the 
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methods of 0 3. The higher-order terms are much more complicated but-and this 
is the important point-they drop off faster than the first-order terms as 9+ is 
approached if S satisfies 

s = O*(u - f )  

for large positive U. This is the condition for the first-order field to be asymptotically 
flat. Therefore, assuming that the perturbation expansion converges, an H-space is 
asymptotically flat if its first-order field is asymptotically flat and, in this case, both 
the H-space and its first-order field induce the same intrinsic structure on 9+, i.e. 

0 2-0- 0 *4" = -60 = &, *I: =aka = 743, JI; = -8 U - 742. 

From the point of view of 9+, an asymptotically flat spin-2 field is identical to its 
associated H-space. Similarly, the condition 

s = T(5,  l ) + o * ( u - ' ) ,  
for large negative U, can be shown to imply that the H-space is asymptotically flat at 9-. 
The relevance, if any, of the reality condition, d2.rr = real, to H-space theory is not, as 
yet, clear. 

A similar argument also applies to self-dual gauge fields. By means of a construction 
formulated by Sparling and Newman (Newman 1980), almost any such gauge field 
can be generated from a matrix aii(u, 5, f ) ,  of functions of weight ( -  1,  - l ) ,  where i 
and j refer to the representation of the gauge group. As in the H-space case, we can 
write aii = rSii and form a perturbation expansion. 

To first order this yields several self-dual Maxwell fields which are identical to those 
generated by Sii by the methods of 0 3. These first-order fields are again dominant near 
9+ if 

sij = O * ( C ) ,  

and hence (assuming that the perturbation expansion converges) the gauge field is 
asymptotically flat. In this case, both fields induce the same intrinsic structure on .9+. 

The results of this paper also appear to have some bearing on isolated (real) solutions 
of Einstein's equations, i.e. solutions which are supposed to describe well behaved 
isolated systems. In a previous paper (Ludvigsen 1981b) it was argued on certain physical 
grounds that an isolated solution should be asymptotically flat at $+, and that its 
asymptotic shear 5' should satisfy 

for positive U, 

aa=T([ ,  f)+o*(u-c) for negative U, 

where B2.rr is real. These conditions cause the associated spin-2 field, and hence the 
associated H-space, to be asymptotically flat. This leads one to expect that a defining 
feature of an isolated solution may be the asymptotic flatness of its associated H-space. 

Appendix 

Theorem. If 4A...Z is an AF integer spin field with asymptotic component 4: (n = 2s), 
then 

(AI) ~ A . . . z ( x ) = - ~  ( ~ ; ( X ' L , ,  5, ~ ) O A .  Oz d o .  
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Proof. It is clear from the invariance properties of ( A l )  that it is sufficient to show that 

(A21 

where 0 is the origin point of our coordinate system. Since OA and ZA satisfy OAIA = 1 
and $0, = - I A ,  c$A. . .~ (O)  can be expanded in the form 

( ~ A . . . z ( O )  = -f 4: (0 ,5 ,  [)OA . . Oz d o  

where 

P = 4A,,,zoA , . . oz. (A4) 

Note that P is equal to 40 evaluated at 0. Since 4 dR = 1, equation (A3) yields 

(A51 

where we have integrated by parts. We shall now use the field equations (2.22) and 
(2.23) to show that the right-hand side of (A2) is equal to the right-hand side of (A5). 

By means of induction, one can easily show that the radial equations (2.23) 
imply that 

an(r"4, ) /arn  =$n40, (A6) 

( n  + 1) 
n !  4a ... z (0 )  = f 4 ~ . .  z (0)  df l=  - f POA . O z  dfl, 

and hence 
00 a"-' 

lim - (rn4n) = Jo 
r -a2  ar"-' dr. 

As the field is AF, we have 

), 
0 - 1  + o * ( r - ( l + c )  

an-'  

(bn = 4 n r  

and when this is substituted into (A7) we obtain 

gn40 dr = lim - (4; r n - l )  = ( n  - l)! 4;. 
1-00 ar"-'  

Therefore 

From equations (2.22) we have 

and hence 
- . a - indo I -  a"& = - a"& + -- - 

ar r r  

By means of the commutation relation 

$377 - 3gq = 2sq, 
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one can show that 

-r7"8C#l1 = n;5"-141 -r?3"4,, 
and when this is substituted into (A10) we obtain - a i"-ld1 - 

= - + *+ n- - 88'4, .  
ar r r 

From equations (2.23) we have 

a n  1 -  
$41 +; 41 = -- r 84" 

and hence 

n - n - l  1 - - a -  
- 8  d 1 + - A n # " = - 8 n - 1  41. r r ar 

Substituting (A12) into (A1 l),  we obtain 

Finally, on  substituting (A13) into (A9), integrating by parts and using equations (A4) 
and (AS) plus the fact that 8 0 ,  = 0, we obtain 
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